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Anatomy and evolution of the first Coleoidea
in the Carboniferous
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Coleoidea (squids and octopuses) comprise all crown group cephalopods except the Nau-
tilida. Coleoids are characterized by internal shell (endocochleate), ink sac and arm hooks,
while nautilids lack an ink sac, arm hooks, suckers, and have an external conch (ecto-
cochleate). Differentiating between straight conical conchs (orthocones) of Palaeozoic
Coleoidea and other ectocochleates is only possible when rostrum (shell covering the
chambered phragmocone) and body chamber are preserved. Here, we provide information on
how this internalization might have evolved. We re-examined one of the oldest coleoids,
Gordoniconus beargulchensis from the Early Carboniferous of the Bear Gulch Fossil-Lagerstatte
(Montana) by synchrotron, various lights and Reflectance Transformation Imaging (RTD. This
revealed previously unappreciated anatomical details, on which we base evolutionary
scenarios of how the internalization and other evolutionary steps in early coleoid evolution
proceeded. We suggest that conch internalization happened rather suddenly including early
growth stages while the ink sac evolved slightly later.
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species and specimens belonging to that clade is often low.

In soft-bodied organisms with a low preservation potential,
the subsequent number of fossil specimens is often less than a
handful hampering the recognition of such early representatives
since characters are usually not as differentiated as in more
derived species. Hence, the origin of the Coleoidea is plagued with
a number of unresolved questions.

The currently most widely accepted phylogenetic hypothesis
for the origin of coleoids suggests the extinct Bactritoidea as sister
groupl. In turn, the bactritoids share the straight conical conch
with their orthocerid ancestors, but they differ in the position of
the siphuncle connecting the phragmocone chambers; in ortho-
cerids, the siphuncle is more or less in a central position, while in
bactritoids and many early coleoids, it is ventral. This character
state is maintained in early coleoids, including all Paleozoic forms
and all Belemnitida, while it becomes altered or reduced (with the
reduction of the phragmocone) in octopuses and most squids.

Some cephalopod remains from the Early Devonian were
interpreted as coleoids based on the similarity of their body
chambers to those of two species of much younger phragmo-
teuthids (Triassic) and based on the presence of a rostrum in
another species!. In spite of similarities to the few unambiguous
Carboniferous coleoids, some authors have questioned the
coleoid nature of these Devonian forms?~7. While the absence of
coleoid fossils from the Middle and Late Devonian casts doubt on
the coleoid nature of these Early Devonian remains, orthoconic
cephalopod conchs are poorly studied and thus, early coleoids
may have been frequently overlooked or misinterpreted as bac-
tritoids8. Several unequivocal coleoid fossils are known from
the Carboniferous and some are even exceptionally well-pre-
served, thereby providing a great amount of anatomical
information>7-9-16, Most studies on molecular clock data place
the divergence of the major coleoid clades (and thus the origin of
the crown group) in the Permian or Triassic’-17-21. However,
taking the large confidence intervals in these studies into account,
even a younger or older divergence date is conceivable and the
timing of the origin of coleoids has presently not been accurately
resolved by molecular studies.

In this context, the cephalopod remains from the Bear Gulch
Limestone Konservat-Lagerstitte (Late Mississippian: Late Ches-
terian = Late Serpukhovian?2) of Bear Gulch in Montana?3-27 are
essential for our understanding of coleoid evolution. Here, we
focus on the type material of Gordoniconus beargulchensis?8. It
preserves the complete orthoconic conch with its conical phrag-
mocone, a long body chamber with a slightly constricted and
curved aperture, and a conical rostrum. Like all the cephalopods
from this conservation deposit, none of the original aragonitic
shell and rostrum retains the original mineralogy and the holo-
type was first described in open nomenclature’. The flattened
specimen was initially described as an orthocerid with the
description focusing on the stomach contents (conodonts, fish
remains) and the jaw. However, with the presence of both an ink
sac and a rostrum, Mapes et al.>?8 recognized the coleoid nature
of the specimen and added some morphological details based on
standard microscope examinations. When it came to the soft part
imprints around the jaw, they limited their interpretation to the
words “cephalic region™?.

We re-examined the specimen using lights of varying wave-
lengths, including ultraviolet (UV)-light and white light applied at
a very shallow angle, including Reflectance Transformation
Imaging (RTI), as well as synchrotron micro-X-ray fluorescence
major-to-trace elemental mapping. The imagery allowed several
previously unappreciated anatomical details to be observed. Here,
we describe these details, discuss them in the evolutionary context
of related cephalopod groups and reflect on possible processes

Temporally close to the origin of a clade, the number of

that led to the internalization of the conch and thus coleoid
origin. This enabled us to reconstruct the evolutionary innova-
tions involved with the origination of the Coleoidea such as conch
internalization followed by the evolution of the ink sac and
possibly further differentiation of the brain.

Results

Material. The main specimen consists of four fragments of one
individual, the holotype of Gordoniconus bearguichensis. Both
part and counterpart are broken in the middle (formerly glued).
The specimen is kept with the numbers AMNH 43264 (part) and
AMNH 50267 (counterpart) in the American Museum of Natural
History in New York (Fig. 1). We refer to the parts with the body
chamber and soft parts as the anterior part and the part with
phragmocone and rostrum is dubbed posterior part. We consider
the parts, where the fossil forms a convex structure (elevated
above the bedding plane), as the part (AMNH 43264) and the
concave side as the counterpart (AMNH 50267). In addition, we
examined the paratype (AMNH 5743) of G. beargulchensis as well
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body chamber?
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Crop or stomach

Digestive gland
Oesophagus
Cephalic cartilage

Lower jaw

Arms

Fig. 1 Holotype of Gordoniconus beargulchensis. Part and counterpart of the
best preserved specimen of one of the oldest known coleoid fossils,
displaying the shape of its complete hard parts and remains of the most
important non-mineralized organs. Scale bar is 10 mm. a Counterpart
(AMNH 50267) and b part (AMNH 43264), Bear Gulch Limestone (Late
Mississippian), Bear Gulch, Montana (USA)
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as some topotypes for comparison from the Carnegie Museum of
Natural History, Pittsburgh, Pennsylvania (CM) and the Uni-
versity of Montana Paleontology Center Research Collection,
Missoula, Montana (UMPC).

Arms. In front of the aperture, a structure with irregular outline
measuring 15x 15 mm under UV-light (brownish; Fig. 2f-j), in
the RTI-images (Supplementary RTI file) and 18 mm (length) x
15 mm (width) under white light is visible in anterior part and
counterpart (AMNH 43264, 50267; Fig. 2a—e). Under white and
UV-light, a 6.5 mm long and 4.2 mm wide dark oval structure is
visible, which was earlier interpreted as the jaws>*28. The sur-
rounding two lobes were called cephalic region by Mapes et al.*
and they wrote that tentacle stumps do not cause the irregularity
of its outline.

We re-examined the cephalic region using RTI (Supplementary
RTI file) and white light applied at a very low angle to enhance
contrast (Fig. 2a-e). The photos revealed longitudinally oriented
furrows subdividing this field into 5 to 7 longitudinal structures.
These structures converge slightly towards the plain of symmetry
anterior of the mouthparts. At the anterior end, this causes an
irregular outline with about four to six subtriangular elevations in
the part and furrows in the counterpart of around 2 mm length.

Are these structures arm crown-remains? First, the position in
relation to other organs fits. The supposed arms lie outside the
aperture and anterior to the buccal mass. Additionally, they slightly
converge anteriorly; when examining the venter of soft parts of
Recent nautilids, the arms do the same around the hyponome2%-30;
similarly, the arms converge around the funnel in modern
Spirula®1-32, Second, the low number of arms coincides with the
supposed plesiomorphic state in coleoids. The earliest other
coleoids from the Carboniferous with preserved arms (Jeletzkya
douglassae33 and questionably Pohlsepia mazonensis>*) are from
the Pennsylvanian and have ten arms as do Mesozoic stem group
coleoids (belemnites, diplobelids and phragmoteuthids!3-333>-38),
Soft part preservation in orthoconic cephalopods is exceedingly
rare. However, the few that are known also fit the supposed
plesiomorphic state of a low number of arms®. Third, the
proportions of the arms in relation to the buccal mass, conch
length and width are within the broad range of proportions in
living coleoids. In Magnapinna, the arms can be ten times as long
as the mantle, while in Teuthowenia, the mantle is five times longer
than the arms. Contracted arms of Spirula measure a sixth of its
mantle length and in Jurassic Plesioteuthis, contracted arms
measure roughly 10% of mantle length0. In Gordoniconus, the
arms measure about 10% of conch and mantle length. Addition-
ally, the proportion of arm length to width is within the range of
Recent coleoids. Taking these facts together, we conclude that all
homology criteria are fulfilled and thus, arms are preserved in the
holotype of Gordoniconus.

Because of the absence of arm hooks and the faintness of the
separating furrows between the arms, it is difficult to determine
the number of arms. Presuming that the arm crown was arranged
circumorally as in Recent coleoids, we assume that not all arms
are visible in ventral or dorsal aspect. Thus, at least half of the
arms should be visible from below. Both in slab and counter slab,
about six arm imprints of similar length can be seen. It appears
unlikely that only two arms are covered by these six arms and
thus, we infer that ten short arms were present. In the soft parts of
the holotype, we do not see evidence for modified tentacles (or
their bases), which should be longer than the arms, thus
conforming to the supposed plesiomorphic state.

Mapes et al.?8 assigned a supposedly hook-bearing tentacle
from a different specimen (paratype UMPC 5743) to this species.
We doubt that it belongs to the same species, because the

associated phragmocone has a higher apical angle and an ink sac,
absent in all other specimens of Gordoniconus we examined. The
evidence presented there is not convincing, because the alleged
arm hooks are irregularly shaped and arranged. A re-examination
(Fig. 3) revealed that this structure is a coprolite containing
irregular fibers that superficially resemble arm hooks. If the
phylogeny of Kréger et al.!l is accepted, tentacles (modified arm
pair IV) probably evolved after the Paleozoic. Also, at least the
bases of the tentacles should be preserved because, as demon-
strated by Clements et al.41, if soft parts are fossilized in coleoids,
this usually covers particularly arms and tentacles. Accordingly,
we suggest that Gordoniconus had ten arms of similar
proportions.

Funnel (hyponome). The anterior convergence of the arms is
likely caused by the funnel. Since all crown group cephalopods
have a central ventral funnel, this was likely also the case in
Gordoniconus. There is one structure preserved posterior of the
buccal mass that might either represent remains of the funnel or
of the cephalic cartilage (Fig. 2k-o).

Buccal mass. Preservation, position, and proportions corroborate
the interpretation of the dark oval structure anterior of the
aperture as jaw remains (Figs. 1 and 2). All previous authors came
to the same conclusion®?28, They noted that the anterior part of
the jaw is black, i.e. darker than the posterior part. Additionally,
there is an anterior crescent-shaped field (Fig. 2) that is mor-
phologically separated from the lighter colored posterior part. As
we support that the arms converge anterior to the supposed
funnel (hyponome), then the specimen is seen in ventral view
with the larger lower jaw being visible. Thus, the crescent-shaped
structure can be interpreted as the short outer lamella (char-
acteristic for lower jaws) with the lighter colored and much longer
inner lamella behind. In the counterpart, the inner lamella shows
a lighter colored central stripe (Fig. 2k-o). This is either a
taphonomic artifact or an imprint of the upper jaw.

Cephalic cartilage. Examination of the material under UV-light
(Fig. 2i, j) and light of different visible wavelengths (Fig. 2k-o)
revealed several structures invisible otherwise (Fig. 2). Under UV-
light, a series of structures appears in orange (Fig. 2a—e). From its
color under white and UV-light, we infer that these structures
represent phosphatized soft-tissue-remains. Phosphatisation of
these structures is corroborated by their incorporation of stron-
tium and most importantly yttrium that preferentially substitute
for Ca in calcium phosphate*? as shown in the pXRF element
maps (Fig. 4).

The largest of these structures is the crop or stomach content,
which contains prey remains®. There are numerous small orange
patches in the UV-images posterior and anterior of the crop/
stomach (Fig. 2f-j). Anteriorly, some of these patches are aligned
along the midline, suggesting affiliation with the esophagus.
Directly posterior to the aperture, there is an irregular,
asymmetrical, bilobate structure, each of the lobes measuring 4
to 6 mm in length and 4 to 5mm in width. Since the two lobes
have roughly the same size, outline and appearance under UV-
light as well as, e.g., reflectance under visible and infrared lights
(Fig. 5a, e), the asymmetry might be due to taphonomic
alteration and the structure might originally have been
symmetrical. Since these two lobes lie immediately posterior of
the aperture and jaws, we assume that they still belong to the
head region and possibly represent remains of the cephalic
cartilage’743-45 Alternatively, they could represent parts of the
digestive glands, but this hypothesis appears less likely: due to its
chitinous cover, the cephalic cartilage has a preservation
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Fig. 2 Gordoniconus beargulchensis, counterpart (AMNH 50267, a-c, f-h, k-m) and part (AMNH 43264, c-e, h-j, m-o0), photographed using lights of
different wavelengths to make fossilized soft parts visible. Scale bar is 10 mm. a-e Photographed under white light at an acute angle. b-d Drawings of the
visible structures. ¢ Combination of b and d. f-j Photographed under UV-light. g-i Drawings of the visible structures. h Combination of g and i. k-o False-
color overlays of reflectance under blue (435 nm) and infrared (770 nm) lights (k-m) and under blue (435 nm), green (550 nm), and red (660 nm) lights
(m-0). I-m Drawings of the visible structures. m combination of I and n

potential almost as high as that of the jaws and the esophagus size of these two structures contradicts an interpretation as

and thus has a higher preservation potential than the digestive statocysts in modern cephalopods, but it is conceivable that
organs due to recalcitrance of the different tissue histologies. The statocysts are a part of it.
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Fig. 3 Part of a structure previously interpreted as a tentacle of Gordoniconus beargulchensis (paratype, UMPC 5743) photographed under white light (a) and
parts of it drawn by Mariah Slovacek (b). Scale bar is 10 mm. Owing to the irregularity of the supposed arm hooks, its preservation and arrangement, we

suggest that this is a trace fossil and not a tentacle

Fig. 4 Synchrotron X-ray fluorescence mapping of the anterior part of the holotype of Gordoniconus beargulchensis, AMNH 50267. Scale bar is 10 mm. a False
color overlay of zinc (red), strontium (green), and iron (blue) distributions reconstructed from Ka peaks integrated intensities. b Yttrium distribution. The
color scale goes from dark (for low intensity) to bright (high intensity) going through pale. Strontium and yttrium highlight the phosphatized tissues (green
and white spots), whereas the arm crown and jaws appear enriched in zinc. This is corroborated by observation under UV-light
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Fig. 5 Morphological details of the cephalic cartilage of Gordoniconus beargulchensis (AMNH 50267). Scale bars are 5 mm long. The red and yellow arrows
indicate the logical arrangement of the figures: red relates a and e to the rectangle in d and the yellow arrows show the sequence of interpretation and
combination of imagery. a False-color overlay of luminescence images collected at 435, 571, and 935 nm under UV-A (365 nm) excitation. b Sketch of the
structures seen in a. ¢ combination of b and f. d Overview, red square shows the area of interest depicted in a to ¢ and e to g. e False-color overlay of
reflectance images collected under blue (435 nm), green (550 nm), and red (660 nm) excitations. f Sketch of the structures seen in e. g Tentative

reconstruction of parts of the structures of the cephalic cartilage

The visible structures (Fig. 5a, e) appear like thin sheets of
phosphate. Their superficial appearance suggests that the structures
are subdivided in a roughly symmetrical anterior portion that
reflects colored light less strongly and a pair of posterior structures
that shows fine folds and reflects the light more strongly. All these
parts surround the supposed esophagus. Its position around the
esophagus directly posterior to the buccal mass corroborates their
interpretation as cephalic cartilage. Additionally, this position
within the body chamber implicates a retractable head.

Digestive tract. The crop or stomach was already recognized in
the first description® with its contents of fish and conodont
remains. It is 8 mm long, 15 mm wide and filled by an amorphous
light gray phosphatic mass containing dark brown skeletal prey
remains.

A straight structure that connects the crop with the jaws lies
anterior to the crop; it is visible under white light (Fig. 2a-e) and
shows a series of orange spots under UV-light (Fig. 2f-j). It is
20 mm long and about 1 to 2 mm wide. Under white light, this
structure shows a series of small constrictions and elevations
(Fig. 2a-e). Its proportions, dimensions, the slight phosphatisa-
tion and the connection with crop and jaw, as well as the fact that
it crosses the supposed cephalic cartilage corroborate its
interpretation as esophagus.

Another structure appears faintly in photos taken under UV-
to IR-lights (Fig. 2g-o). It has an outline reminiscent of a butterfly
and is about 12 mm long and each of the two sides about 5 mm
wide. This could be an artifact, but since it is visible under light of
various wavelengths, we think that it represents a fossilized organ.
If true, it could be the digestive glands according to their relatively
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large dimensions, their position attached to the esophagus behind
the cephalic cartilage and their overall proportions (elongate,
arranged parallel to the esophagus).

Ink sac. In the examined material of Gordoniconus, there is no
evidence for the presence of an ink sac. By contrast, Mapes et al.?8
depicted a rather big ink sac in another specimen of probably a
different species from the same locality and age (UM 5743). Its
outline and anatomical position cannot be reconstructed because
this specimen does not show a lot of further detail. The large size
of the ink sac—missing in the better preserved holotype—casts
doubt on the taxonomic assignment. Additionally, we think that
the ink sac evolved with the gradual reduction of the conch,
which is not visible in Gordoniconus. Accordingly, the absence of
an ink sac might be taphonomic in the examined material or UM
5743 belongs to a different species, which is supported by the
higher apical angle (20 instead of 10° in the flattened state) in the
specimen with ink sac and the possible absence of a rostrum. We
examined four well-preserved topotypes of Gordoniconus from
the Carnegie Museum of Natural History (Pittsburgh), which also
show soft-tissue preservation like the holotype but no ink sac
(Supplementary Figs. 1-3).

Gills or gonads?. Behind the crop, there is a structure visible
under white light (Fig. 2) and in the RTI-images (Supplementary
RTI-file). It is approximately symmetrical, elongate and spans
most of the distance between the crop and the last phragmocone
chamber. It is 25 to 30 mm long and about 5 mm wide. There is a
central ridge, almost 2 mm wide at its anterior end, to which
about 20 lanceolate lappets 3 mm long and 1 mm wide are
attached (Fig. 2a—e).

Superficially, this structure resembles the gills as preserved in
Mesozoic coleoids®®40. The position casts doubt on this
interpretation: in modern coleoids, the gills are usually situated
in the mantle cavity ventral to the digestive tract and not
posteriorly; in the posterior portion of the soft body, there is the
stomach and the gonads behind it. Since gonads do not show a
filamentous structure in modern coleoids, we tentatively interpret
them as gills*%46, In the area where the gills or gonads are
preserved, a series of spots is visible under UV-light and other
wavelengths (Fig. 2f-0). These spots are irregular in size, shape
and arrangement and thus, it is unclear whether these structures
represent parts of the gills, gonads, mantle or something else. A
posterior position of the gills appears disadvantageous as being
distal to the mantle aperture; it would thereby decrease oxygen-
rich water supply and increase metabolic waste products.
Applying homology criteria to the alternative interpretations,
the criterion of structure is fulfilled by gills; the criterion of
position is fulfilled for gonads, the digestive tract and with some
reservation for gills (somewhat similar in nautilids); the criteria of
embryology and continuity cannot be applied due to lack of data.
Thus, we prefer the interpretation as gills because their structure
resembles other fossilized coleoid gills#0:49,

Mantle. Unlike in post-Triassic coleoid fossils*!47, there are no
thick striated remains of muscular mantle. This is not surprising
because Gordoniconus represents a very early evolutionary stage
of conch internalization, reduction of hard parts, as well as
enhancement of the efficiency of the locomotory apparatus.
Nevertheless, within the body chamber, many small orange pat-
ches can be seen under UV-to-IR lights, particularly behind the
crop/ stomach (Fig. 2). They lack a defined structure, arrange-
ment or anatomical detail, thus hampering their homologisation
with organs of modern relatives. Nevertheless, they could repre-
sent skinny mantle remains (or dermis*!), since it is an important

Fig. 6 Photos of the posterior part of the holotype of Gordoniconus
beargulchensis, counterpart (AMNH 50267, a, ¢) and part (AMNH 43264,
b, ¢). The striped triangular (originally conical) part to the right is the
chambered phragmocone, the arrow-shaped surface in the center of the
image is the flattened rostrum, to which fins were attached in more derived
coleoids. The imprints on the left in the photos were first thought to be fin
remains. Scale bar is 10 mm. a, b Photographed under white light; arrows
point at the limits of the landing mark. ¢ Under UV-light; the white arrows
point at the limits of the remains of glue or varnish that shine blue in UV-light

and large organ that has a great potential to become phosphatized
as evidenced by Mesozoic relatives36-41:42:47,

Fins or landing mark?. Although visible in white light, the blue
patch that appears under UV-light (Fig. 6¢) behind the rostrum is
probably a film of glue or varnish and thus an artifact. Therefore,
we base the discussion on the images taken under white light at a
very low angle (Fig. 6a, b). The symmetrical structure lies 5 mm
behind the posterior tip of the rostrum, it is 10 mm wide and
almost 20 mm long. The anterior 12mm form a pear-shaped
imprint broadening posteriorly (Fig. 6). We suggest two alter-
native interpretations for this structure; either, these could be (1)
the fins or (2) it is a landing mark that formed when the carcass
hit the sediment with the tip of the rostrum. Such landing marks
are well-known from Jurassic coleoids374048, We do not have
conclusive arguments to decide on this matter because anatomical
detail or details classifying it as a landing mark are missing.
Nevertheless, as none of the different imaging techniques revealed
a particular composition consistent with a soft part nature, we
think that it is a landing mark.

Discussion

What was the sequence of evolutionary events? The preservation
of the head-foot complex with the arm crown of short and
morphologically similar arms without tentacles is an important
finding; based on the arrangement, we suppose that Gordoniconus
had probably ten arms. If accepting the decabrachian (ten-armed)
condition as plesiomorphic for the Coleoidea, the Bactritida are
likely to have shared this character state. Combining this with the
phylogenetic bracket??, all Orthocerida, Ammonoidea, and early
Nautilida (depending on the phylogenetic hypothesis) should
have shared this character state. In modern Nautilida, the ten-
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armed condition is expressed only early in embryogenesis®.
Possibly, early stem group nautilids also had ten arms as adults.

When did the differentiation into eight arms and two tentacles
occur? A differentiation in arm dimensions and function might
have occurred easily and thus also early. It could be related to a
more active predatory mode of life in which the two tentacles
aided in prey capture and manipulation. If correct, the appear-
ance of tentacles may coincide with the development of a stronger
buccal apparatus designed for processing large prey.

If one accepts Pohlsepia®* as the earliest stem group octopod,
this group would have originated in the Carboniferous. Doubt is
cast on this hypothesis!# by Pohlsepia’s poor preservation, the ten
arms in Jeletzkya douglassae (coeval with Pohlsepia), and the
absence of octopod fossils from at least the Permian and Triassic.
According to molecular clock analyses by Tanner et al.20, they did
not originate before the Triassic, while Kroger et al.! proposed an
Early Jurassic origin. Recently, the first evidence of early stem
octopods was presented from the late Kimmeridgian®->0.

From the specimens discussed herein and published mate-
rial?8 seen in lateral aspect, it is evident that the aperture had a
dorsal projection and a ventral (hyponomic) sinus. This is
relevant because the broad ventral sinus provided some space
for the development of the muscular mantle, for lateral move-
ments of the hyponome and improved the maneuverability of
Gordoniconus compared to orthocones with straight apertures.
Also, the inclined aperture suggests that at least temporarily,
the animal was able to tilt its body into an oblique or even
horizontal position facilitated by the mass of the mineralized
rostrum (perhaps supported by apically positioned fins or
mantle folds).

More derived coleoids such as belemnitids and phragmo-
teuthids have proportionally shorter phragmocones with higher
apical angles. Additionally, the thickness of mineralized shell in
the rostrum increased in some lineages, thereby shifting the
centers of mass and buoyancy closer towards each other®8. This
improved maneuverability in space and could have facilitated
horizontal swimming, which is important for hunting and
reproduction.

Coleoid ink is commonly fossilized®1>2. We suggest that its
absence in unequivocal specimens of Gordoniconus shows that
the ink sac evolved after endocochlisation?’, as a defense organ,
possibly due to the conch losing its protective function. Fossil ink
sacs from later in the Carboniferous prove, however, that ink sacs
evolved soon thereafter?°.

Fins are very rarely preserved throughout the Mesozoic coleoid
fossil record!437:40:4445 Symmetrically arranged lateral furrows
in rostra provide indirect evidence for fins in Mesozoic coleoids3,
while evidence from the Paleozoic is missing. Fins attached to the
rostrum make sense as an adaptation for horizontal swimming
and thus, we think that the fossil record of thick rostra in the
Mesozoic reflects the presence of fins. It is conceivable that there
were mantle wrinkles in Paleozoic forms that evolved into fins in
Mesozoic coleoid lineages (and some Late Paleozoic ancestors).

How was the cephalopod conch internalized? There is a con-
sensus that the Coleoidea derived from the Bactritida either in the
Early Devonian?%>* or in the Early Carboniferous!. This is rele-
vant because the Bactritida were supposedly ectocochleate while
the endocochleate state is one of the most important autapo-
morphies (apart from the ink sac) of coleoids. Consequently,
mid-Paleozoic cephalopods must have evolved a shell-secreting
tissue reaching to the apical end of the phragmocone (the initial
chamber) or possessed it from early development and retained it
until they reached maturity (Fig. 7). Evidence from Paleozoic and
Mesozoic coleoids shows that their embryos had already depos-
ited shell on the posterior of the initial chamber forming the
subconical ~primordial rostrum28>°6,  Similar  structures
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documenting the early evolution of an internal conch have been
documented from other Paleozoic fossils?~13:28,34,51,57-61

The strangeness of the evolution of an endocochleate conch
becomes clear when taking the very long and slender conch of
Gordoniconus into account, trying to imagine that living mantle
tissue reached the tip of the rostrum all the way from the aper-
ture. It is simple to understand how the embryonic conch became
internal®®, but it is less obvious what could have been the selective
advantage of conch internalization. Also, the evolutionary path-
way leading to a conch that is endocochleate throughout onto-
geny is unknown.

An internal conch has the disadvantage of exposing soft-tissues
directly to predators and parasites, requiring secondary defense
mechanisms (ink, flexible camouflage or poison, all of which
evolved later in coleoids). Potential drivers of the early evolution
of coleoids could have been the inability to repair shell damage
from the outside, sensory functions and/or alteration of the dis-
tribution of mass as previously discussed and a near-apical
attachment of fins (for hydrodynamic lift%2), thereby making a
nearly horizontal swimming position possible. This would have
improved horizontal swimming abilities, which are important to
catch prey, to escape predators, and to search for and reach
mating partners. These factors represent powerful agents to
counteract selective pressure, fostering evolutionary change in
actively swimming marine animals.

Unfortunately, anatomical detail of the apical mantle is missing
and the imprints behind the apical end of the holotype of Gor-
doniconus are likely landing marks rather than fins. Independent
of the interpretation of these marks, fins would already have been
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useful for hatchlings of early coleoids. For example, minute
holoplanktic gastropods also possess fins, and there are some
Thecosomata®? possessing straight conchs. Although the evidence
for evolutionary pathways is still poor, we suggest the following
alternative hypotheses (Fig. 7):

(1) During middle or late ontogeny, the mantle of early stem-
coleoids began to grow out of the aperture backwards eventually
covering the entire phragmocone (possibly subsequently evolving
keel-like folds for hydrodynamics), for shell repair from the
outside and/or as a sensory surface (Fig. 8, top). Through evo-
lution, the external mantle grew further apically and began to
form increasingly earlier in ontogeny, ultimately reaching the
embryonic stage. The advantage driving the positive selection
likely applied to the hatchling as well, fostering ever-earlier
appearance of conch internalization in ontogeny. Further het-
erochronic growth traits in coleoid cephalopods have been
described!>>0:64,

The mantle contains muscles, as, e.g., in cypraeid gastropods
(cowries). Their mantle can move to some extent, producing
wrinkles and thinner or thicker parts. Speculatively, early coleoids
probably also had similar mantle wrinkles that provided
improvements in locomotion, particularly for steering and by
producing a slight hydrodynamic lift. Feedbacks from positive
selection for more strongly developed folds might have led to the
evolution of increasingly muscular external mantle and fins. In
turn, with the accumulation of shell-forming tissues, more car-
bonate was secreted at the rostrum, later leading to thick
belemnite-like rostra. To what extent the thick mineralized ros-
trum helped the coleoid to achieve a horizontal position requires
further research31:38:62,

Proof for this course of character evolution would be a tran-
sitional form where a conch with bactritid morphology shows
evidence of secondary formation of shell from the outside only
around the body chamber with no secondary shell around the
initial chamber. The bulk of Carboniferous taxa with external
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Fig. 8 Hypothetical temporal sequence of key-innovations that occurred in the
evolution of coleoids within the Carboniferous. Note that a fossil record of fins
or similar structures is missing from Paleozoic coleoids; for all other depicted
body parts, fossil evidence is available from the Carboniferous. The small blue
cephalopods shall represent the syn vivo orientation of these animals,
changing from vertical to approximately horizontal. Light blue—conch; light
yellow—soft parts; dark gray—ink sac; brown—mineralized rostrum

(secondary) shell layers is missing clear evidence of a fully
invested initial shell (e.g., Palaeoconus, Shimanskya, Donovani-
conus); among Carboniferous coleoids, only Hematites (Late
Mississippian) and Mutveiconites (Late Pennsylvanian) are con-
firmed to be internal starting in early embryonic stages?86>, The
enveloped initial shell of Hematites shows that the coleoid conch
internalization was completed by the end of the Late Mis-
sissippian (310 my). Forms intermediate between partially endo-
cochleate bactritoids and fully endocochleate coleoids may
therefore be expected in early Mississippian sediments.

(2) A mutation caused the shell-secreting tissue to surround
the embryonic conch from a very early embryonic stage (Fig. 8,
bottom). A comparable transition was reported for gastropods®®.
This would have represented some kind of pre-adaptation, where
either the endocochleate condition simply lasted or the endo-
cochleate state extended into increasingly later ontogenetic stages
through phylogeny.

Proof for this hypothesis would be a transitional form showing
secondary shell deposited from the outside during the embryonic
phase. Such findings have been published by Doguzhaeva
et al.10-12.61 sugoesting that endocochlisation may have evolved
convergently several times in different cephalopod lineages
(ammonoids and nautiloids®’-9). Thus, we favor the hypothesis
that the conch became endocochleate already in an early
embryonic stage.

What are the implications for the paleoecology of other Paleozoic
cephalopods? The superficial similarities in conch morphology
between Gordoniconus and bactritids suggest some similarities in
their modes of life. However, Gordoniconus had a rostrum, which is
absent in bactritids. For both groups, an oblique to nearly vertical
position in the water column appears probable when inactive. The
presence of conodont and fish remains in its digestive tract® sup-
ports the hypothesis that, being closely related, bactritids (and
ammonoids) were micro-predators as well, feeding on small animals
and perhaps also carrion. In turn, this suggests that an approxi-
mately horizontal orientation could be achieved at least occasionally
by Gordoniconus and other early rostrum-bearing coleoids during
life3392. Both prey groups are known to have been good swimmers
and while one of these prey animals could have been carrion, it is
unlikely that both were. Notably, both larger prey (fish) and smaller
prey (conodonts) were ingested. That both were broken into small
bits can be explained by the biting power of the buccal apparatus
and limitations in size present on the oral opening such as the
necessity that these items had to pass through the cephalic cartilage
surrounding the esophagus.

The prod mark apical to the rostral tip of Gordoniconus implies
that the rostrum accumulated enough mass to let the carcass sink
apex first into the sediment. This supports our contention that
Gordoniconus lived in the water column. Similar observations are
widely documented from Jurassic belemnites*$, which occasion-
ally were embedded obliquely to vertically with the apex pointing
downward. This would suggest indirectly that an approximately
horizontal orientation could be achieved by the animal during
life38:62,

In conclusion, we examined the holotype, a paratype and some
topotypes of Gordoniconus beargulchensis, the earliest coleoid
preserved with its complete conch, jaws, and soft parts. Some of
these body parts have been recognized earlier®28, but we were
able to refine those interpretations by examining the fossils under
light of various wavelengths and geometry, including UV-light
and white light applied at a very shallow angle (including RTI), as
well as X-ray elemental maps.

These new images revealed the presence of probably ten
undifferentiated and short arms. A supposedly hook-bearing
tentacle?® is re-interpreted as a coprolite. Additionally, we
recognized remains of the cephalic cartilage, further details of the
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digestive tract and possibly the gills (or gonads). Approximately
symmetric imprints posterior to the apex of the rostrum represent
a landing mark that formed when the carcass of the animal sank
onto the sediment surface, as documented from Mesozoic
belemnites.

The presence of a distinct conical rostrum indicates the
endocochleate state of the conch and corroborates the inter-
pretation of this species as a coleoid. Based on this fact, we
introduce the hypothesis that the internalization of the conch
began to support horizontal swimming movements very early in
coleoid evolution by shifting the center of mass closer to the
center of buoyancy to increase maneuverability. We speculate
that the development of an external mantle may have included
the formation of longitudinal wrinkles or ridges, which acted as a
basis for a primordial fin that then became vital for crown
coleoids as their body position became more horizontal. Evolu-
tionary feedbacks between locomotory advantages and anatomy
positively selected for thicker rostra, ventral reduction of the body
chamber wall, differentiated mantle folds, and eventually true fins
(at the latest in the Jurassic37-38:40:47),

We propose that the internalization of the conch was the main
first evolutionary step in the origination of coleoids that hap-
pened at the latest in the Early Carboniferous. Innovations such
as ink sac (Early Carboniferous) and fins (Fig. 8) followed later
and tentacles represent comparatively modern modifications of
the arm crown (Jurassic).

Methods

Light of varying wavelength. In order to reveal previously undetected anatomical
details, we used various light sources. Among those was a regular UV-lamp. The
camera lens was equipped with a polarization filter in order to remove the reflected
UV-light. We further treated these images using PhotoShop (we automatically
corrected the color and increased the contrast) in order to reduce the color artifact
and to enhance the contrast. Additionally, we used a regular white lamp, which was
installed at a minimal angle to enhance shadows of very small elevations on the
fossil. Other details were revealed by combining different reflectance and lumi-
nescence images collected within narrow regions of the visible and near-infrared
spectrum (defined by narrow band-pass filters) using different excitation wave-
lengths from the UV-A (365-400 nm) to the near-IR (~800 nm).

Synchrotron micro-X-ray fluorescence. {XRF mapping was performed at the
DiffAbs beamline of the SOLEIL synchrotron source (France) using a mono-
chromatic beam of 18.2 keV, selected for excitation of K-lines from phosphorus to
zirconium and L-lines from cadmium to uranium. The beam was focused down to
10 um using Kirkpatrick-Baez (KB) mirrors. The sample was mounted on a
scanner stage allowing few centimeters movements with micrometer accuracy.
Incident X-ray beam impinges on the sample at an angle of 65° from the surface
and the fluorescence radiation is detected with a mono element silicon drift
detector (Vortex EX, total active area: 100 mm?2) at an angle of 25° from the surface.
The anterior part of AMNH 50267 was mapped at a 80 um lateral resolution, with
a 50 ms dwell time. pXRF elemental maps were then produced through the col-
lection of integrated intensities in selected spectral regions of interest corre-
sponding to Fe, Zn, Sr, and Y Ka emissions.

Reflectance transformation imaging. RTI707! was applied to the holotype of
Gordoniconus beargulchensis using the RTI-dome in the Digitization Lab of the
Institute for the Preservation of Cultural Heritage at Yale University, New
Haven, Connecticut. The software for processing is RTIBuilder and the soft-
ware for viewing is RTIViewer. The RTI-dome is dome-shaped and carries 100
regularly arranged lamps. Photos are taken from the azimuth position with
each light switched on once, resulting in 100 photos combined in one large file.
The obtained files can be used to change lighting while viewing the images
by moving the cursor. This is relevant in the material described here

because only very low light from various directions shows some of the
described structures.

Statistics and reproducibility. No statistical analyses were performed. Data were
based on one main specimen and three additional specimens depicted in the
supplement. All photographs can be reproduced by using the same RTI-settings or,
respectively, light sources of the same wavelengths. The RTI-file is composed of 100
photos taken with a standardized setting. Accordingly, repetition of photography
will yield nearly identical results.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data generated or analyzed during this study are included in this published article
(and its supplementary information files). The specimen is kept in the American
Museum of Natural History in New York, with the numbers AMNH 43264 (part)

and AMNH 50267 (counterpart). Reflectance Transformation Images, *.rti and *.

ptm of the holotype AMNH 43264 are provided as Supplementary Data. To view these
images and change the illumination, the required software RTIViewer is available at
http://culturalheritageimaging.org/What_We_Offer/Downloads/View/. These RTI and
PTM files have been deposited in Figshare”%73
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